

IGRA guidelines

P. Van Bleyenbergh and Respiratory Infections Working Group

Financial statement

 The speaker has no financial involvement with any organization or entity with a financial interest in the subject matter of materials discussed

This presentation is given without any financial rewards

Respiratory Infection Working Group

- Charlotte Depuydt
- Iris De Schutter
- Guy Joos
- Paul Jordens
- Pieter Goeminne
- Olivier Golinval
- Dirk Ommeslag
- Yvan Valcke
- Pascal Van Bleyenbergh
- Paul Van den Brande
- Walter Vincke

IGRA guidelines:

- Maryse Wanlin, FARES
- Wouter Arrazola de Onate, VRGT
- Veroniek Saegeman, Microbiology Lab, UZ Leuven
- Paul De Munter,
 General Intern Medicine, UZ Leuven

For whom are these IGRA guidelines intended?

- These IGRA guidelines are intended for all healthcare workers concerned about diagnosing latent tuberculosis infection (LTBI).
- IGRAs should not replace the standard diagnostic methods (microbiology, molecular tests, clinical and radiological assessment) for diagnosing active TB.
- A negative IGRA does not rule out active TB.

What are IGRAs?

IGRA = Interferon-y Release Assay

IL-8, etc

L-8, etc

Measurement of IFN-γ production

Andersen P et al. Lancet 2000; 356: 1099-1104 Pai M et al. Lancet Infect Dis 2004; 4: 761-776

M. tuberculosis genome

Behr MA et al. *Science 1999*; 284: 1520-1523

IGRAs are more specific for *M. tuberculosis* infection

Strain tested	Antigens	
	ESAT-6	CFP 10
Tuberculosis complex		# 60° (I
M tuberculosis	+	+
M africanum	+	+
M bovis	+	+
BCG substrain gothenburg moreau		
tice		
tokyo		-
danish		2_
glaxo		25-
montreal	_	
pasteur	·=:	-

Strain tested	Antigens		
	ESAT-6	CFP 10	
Environmental strains			
M abcessus	-		
M avium			
M branderi	-	-	
M celatum	220		
M chelonae	-	-	
M fortuitum	=		
M gordonii			
M intracellulare	-	-	
M kansasii	+	+	
M malmoense	-	-	
M marinum	+	+	
M oenavense	=	-	
M scrofulaceum	-		
M smegmatis		, -	
M szulgai	+	+	
M terrae	22	9-1	
M vaccae	-	2:=:	
M xenopi	-		

Andersen P et al. Lancet 2000; 356: 1099-1104

Which IGRAs are available?

Measure Δ IFN-γ concentration

- e.g. QuantiFERON®-TB Gold In-Tube
 - Whole Blood stimulated with TB antigens
 - Measure IFN-γ by ELISA

Measure Δ # of cells releasing IFN-γ

- e.g. TSPOT. TB® (ELISpot)
 - PBMCs stimulated with TB antigens
 - Count spots

Indeterminate results: test vs. host failure

- High background IFN-γ
 (abnormal negative control)
 - Concurrent illness
 - Mitogen put in wrong well (nil)
 - Defective tubes
- Low mitogen

 (abnormal positive control)
 - Transient or chronic immune suppression
 - -GFT-G or T-SPOT: no mitogen in control well
 - QFT-GIT: defective tubes, overfilling, inadequate shaking

IGRAs: time interval to conversion

- Interval for positive conversion following exposure to a patient with active TB is unclear
 - TST: 2-12 weeks → 8 weeks
 - IGRA:
 - · NICE guidelines (UK): 6 weeks
 - · CDC guidelines (USA): 8-10 weeks
 - · ERS guidelines (EUR): 8 weeks

Erkens CGM et al. ERJ 2010; 36: 925-949

Recent study:
 "IGRA conversion generally occurred 4-7 weeks
 after exposure, although it could be as late as
 14-22 weeks!"

What are the (dis)advantages of IGRAs?

	TST	IGRA
Cross-reactivity with BCG	Yes	No
Cross-reactivity with NTM	Yes	Unlikely
Negative/positive control	No	Yes
Reliability/reproducibility	Moderate & variable	High
Boost effect	Yes	No
Patient visits	Two	One
Trained personnel required	Yes	Yes
Laboratory infrastructure required	No	Yes
Time to obtain result	3days	1-2days
Material costs	Low	Moderate to high

Pai M et al. Expert Rev Mol Diagn. 2006;6(3): 413-422

Evaluation of IGRAs

Lack of "gold standard" for LTBI!

- Sensitivity → Compare to culture
 - Sensitivity: # positives/# culture (+) people tested
- Specificity → Subjects at low risk for LTBI
 - Specificity: # negative/# low-risk people tested
 - ✓ Accuracy of IGRAs
 - ✓ Agreement with TST
 - ✓ Positive results vs. exposure
 - ✓ Predicting TB disease

Performance of IGRA test

Sensitivity

Series	Diagnostics	Subject	Studies n	Summary sensitivity (95% CI)
1	QFT-G	TB patients, adult	21	0.80 (0.78–0.82)
2	QFT-G-IT	TB patients, adult	6	0.74 (0.69-0.78)
3	QFT-G/G-IT	TB patients, child	9	0.82 (0.75-0.87)
4	QFT-G/G-IT, T.SPOT	HIV-infected TB patients	5	0.70 (0.60-0.79)
7	T.SPOT	TB patients	13	0.90 (0.86-0.93)
8	TST	Healthy subjects	20	0.77 (0.71–0.82)

Specificity

Series	Diagnostics	Subject	Studies n	pooled	y specificity (96% CI)
				98-100%	
1	QFT-G/G-IT	Healthy young adults	12	7/	0.98 (0.97–0.99)
2	QFT-G/G-IT	Healthy young adults, BCG	8		0.99 (0.98–1.00)
3	QFT-G/G-IT	Healthy young adults, BCG+	8	pooled	.96 (0.94–0.98)
4	T.SPOT	Predominantly BCG vaccinated	8	88.7%).93 (0.86–1.00)
5	TST	BCG not vaccinated	6	7/	0.97 (0.95–0.99)
6	TST	BCG vaccinated	6		0.59 (0.46–0.73)

Lange C et al. Respirology 2010; 15: 220-240

IGRAs: negative predictive value

IGRAs: NPV for progression to active TB

How should IGRAs be used in different population groups and settings?

- 1. Children
- 2. Immunocompromised patients
- 3. HIV-infected patients
- 4. Anti-TNF therapy patients
- 5. Contact tracing
- 6. Screening of occupational healthcare workers
- 7. High-incidence TB settings/populations

IGRAs: clinical evidence base

!! REMINDER!!

IGRAs should be used to detect/screen for latent tuberculosis (LTBI)

Always rule out active disease!!

(microbiology, molecular tests, clinical and radiological assessment)

Use of IGRAs in children

- <u>Children <5 years</u>: increased risk of infection and of developing active disease after exposure to contagious case <u>Children >5 years</u>: same immune response to TB infection as in healthy adults
- Available evidence is too scant to change current recommendations
- Essential to achieve highest sensitivity of detection when diagnosing LTBI, especially in children <5 years old

TST remains preferred test for detection of LTBI

TST + IGRA can increase sensitivity

When both tests are performed, treatment should be given in case of a positive result for either one of tests

Use of IGRAs in immunocompromised patients

- Primary vs. secondary immunodeficiency
 - → heterogeneous group of patients
- TST: low sensitivity (→ cut-off 5mm should be used)
- IGRAs have higher sensitivity but is this high enough to rule out TB infection?
 - → 'probably' YES in low-incidence settings/populations

Two-step approach:

IGRA max 72h after TST

1/TST

L, negative → IGRA

2/IGRA

 \downarrow positive \rightarrow LTBI

L, negative → most probably no LTBI (low-incidence setting)

Use of IGRAs in HIV-infected patients

- Upon diagnosis, all HIV-infected patients should undergo screening for latent TB!
- TST low sensitivity (and specificity) in HIV-patients!
- IGRA
 - High specificity
 - Sensitivity considerably higher compared to TST but...
 - · False-negativeresults!
 - More indeterminate results!! ~ CD4-cell count

CD4 count (cells/ µL)	Indeterminate results (%)	Total number of subjects tested	
>200	14	43	
51-200	25	60	
≤50	30	109	

Use of IGRAs in HIV-infected patients

- Upon diagnosis, all HIV-infected patients should undergo screening for latent TB!
- TST low sensitivity (and specificity) in HIV-patients!

1/ CD4 cells ≤500/ml → IGRA

- IGRA positive: LTBI
- IGRA negative: probably no LTBI
- $2/CD4 \text{ cells } > 500/ml \rightarrow TST \text{ (cut-off 5mm)}$
 - TST positive: LTBI (IGRA if BCG vaccinated)
 - TST negative → IGRA

Use of IGRAs in anti-TNF therapy patients

- Always rule out active TB (history, chest X-ray, sputum exam)!
- TST negative (<5 mm): no LTBI only if no immunocompromising conditions present and/or if no highrisk contact!
- TST positive (≥10 mm): LTBI (BCG vaccinated → IGRA)
- TST intermediate (5-9 mm) or negative with immunocompromising condition present and/or high-risk contact → IGRA
- IGRA

L positive → LTBI

L, negative → most probably no LTBI (low-incidence setting)

Use of IGRAs in contact tracing

- To test = to treat!
- A negative test, performed within the pre-allergic phase (6-8 weeks, range 2-12 weeks), should be repeated 8-12 weeks after last potential contact.

Pre-allergic time period: IGRA = TST

- Most country guidelines favor a two-step approach (positive TST → IGRA) to increase specificity
- Belgium:
 - low-incidence setting (<20/100.000)
 - low BCG vaccination status
 - IGRA: higher price, no reimbursement, not readily available everywhere

Use of TST and IGRA in contact tracing

(adults, children ≥5 yrs)

Use of IGRAs in occupational HCW screening

- IGRAs have some advantages
 - higher specificity
 - no induction of booster effect
- Lack of data on optimal cut-offs for serial testing by IGRA
- Unclear interpretation and prognosis of IGRA conversions and reversions

- 1/ Pre-employment: TST (cf. contact tracing)
- 2/ No change in the strategy based on TST serial testing seems to be justified

Use of IGRAs in high-incidence populations

- Many people have LTBI
- High level of BCG-vaccination
- Increased exposure to NTM
- Increased exposure to M. leprae homologues or IGRAantigens

IGRAs have no added value to diagnose LTBI

Focus of prevention and control is to identify and treat active cases

What are the practical considerations of IGRAs in Belgium?

QuantiFERON®-TB Gold In-Tube (QFT-GIT)

Stage 1: Whole Blood Culture

Stage 2: Measure [IFN- γ] & Interpret

QuantiFERON®-TB Gold In-Tube Interpretation

Interpretation	TB Response	Nil	Mitogen - Nil
Positive	≥ 0.35 IU/ml and ≥ 25% of Nil	<u><</u> 8.0	Any
Negative	< 0.35 IU/ml or < 25% of Nil	<u>≺</u> 8.0	<u>></u> 0.5
Indeterminate	< 0.35 IU/ml or < 25% of Nil	<u><</u> 8.0	< 0.5
	Any	> 8.0	Any

TB response is the IFN-y concentration in plasma from blood stimulated with a single cocktail representing ESAT-6, CFP-10, and part of TB7.7, minus the IFN-y concentration in plasma from unstimulated blood.

QuantiFERON®-TB Gold In-Tube Practical considerations

- Turn-around time (TAT): 26h for single test (lab hands-on 50min)
- Cost: ~45€ (not reimbursed at the moment)

Advantages:

- Can be automated
- Can be 'batched'
- No interobserver differences
- More broadly available in Belgium

Disadvantages:

- Amount of Tcells tested is variable
- Short time before incubation (16h)
- Slightly less sensitive than T-SPOT

Plasma -

White Cells --

Gel Barrier Erythrocytes

and neutrophils

T-SPOT. TB

Collect blood sample, centrifuge to separate white blood cells which are washed and counted to maximise sensitivity.

Add WBCs [•] & specific TB antigens [%] to wells pre-coated with antibodies to IFN-y [Y] and incubate overnight (37°C, CO.).

IFN-y [₩] is released from activated T cells. Wash wells, add secondary conjugated antibody []. Incubate for 1 hour

Wash wells, add substrate and incubate for 7 minutes. Stop reaction with water. One spot [-] is the footprint of one activated T cell.

T-SPOT. TB Interpretation

Interpretation	TB Response	Nil	Mitogen
Positive	≥ 6 spots	< 10 spots	any
Negative	< 5 spots	< 10 spots	≥ 20 spots
Borderline	5, 6, or 7 spots	< 10 spots	≥ 20 spots
Indeterminate	< 5 spots	< 10 spots	< 20 spots
	any	> 10 spots	any

TB Response is the higher number of spots resulting from stimulation of PBMCs with two separate cocktails of peptides representing ESAT-6 or CFP-10, minus the number of spots resulting from incubation of PBMCs with saline.

OxfordImmunotec. www.oxfordimmunotec.com

T-SPOT. TB Practical considerations

- Turn-around time (TAT): 24h for single test (lab hands-on 3-4h)
- Cost: ~60€ (not reimbursed at the moment)

Advantages:

- Amount of Tcells standardised (250.000/well)
- Slightly more sensitive than QFT, especially in immunocompromised pts
- Data about non-sanguinous fluids... but not licenced!

Disadvantages:

- Cannot be automated, longer hands-on time
- Cannot be 'batched'
- Inter-observer differences possible (in counting spots...)
- Not available everywhere

Still an open question...

TST

IGRA